Descripción del método
La idea de este método es la siguiente: se comienza con un valor razonablemente cercano al cero (denominado punto de arranque), entonces se reemplaza la función por la recta tangente en ese valor, se iguala a cero y se despeja (fácilmente, por ser una ecuación lineal). Este cero será, generalmente, una aproximación mejor a la raíz de la función. Luego, se aplican tantas iteraciones como se deseen.
Supóngase f : [a, b] -> R función derivable definida en el intervalo real [a, b]. Empezamos con un valor inicial x0 y definimos para cada número natural n
Donde f ' denota la derivada de f.
Obtención del Algoritmo
Tres son las formas principales por las que tradicionalmente se ha obtenido el algoritmo de Newton-Raphson.
La primera de ellas es una simple interpretación geométrica. En efecto, atendiendo al desarrollo geométrico del método de la secante, podría pensarse en que si los puntos de iteración están lo suficientemente cerca (a una distancia infinitesimal), entonces la secante se sustituye por la tangente a la curva en el punto. Así pues, si por un punto de iteración trazamos la tangente a la curva, por extensión con el método de la secante, el nuevo punto de iteración se tomará como la abcisa en el origen de la tangente (punto de corte de la tangente con el eje X). Esto es equivalente a linealizar la función, es decir, f se reemplaza por una recta tal que contiene al punto (x0, f (x0)) y cuya pendiente coincide con la derivada de la función en el punto, f'(x0). La nueva aproximación a la raíz, x1, se logra la intersección de la función linear con el eje X de ordenadas. Matemáticamente:
En la ilustración adjunta del método de Newton se puede ver que xn + 1 es una mejor aproximación que xn para el cero (x) de la función f.
Una forma alternativa de obtener el algoritmo es desarrollando la función f(x) en serie de Taylor, para un entorno del punto xn:
Si se trunca el desarrollo a partir del término de grado 2, y evaluamos en xn + 1:
Si además se acepta que xn + 1 tiende a la raíz, se ha de cumplir que f(xn + 1) = 0, luego, sustituyendo en la expresión anterior, obtenemos el algoritmo.
Finalmente, hay que indicar que el método de Newton-Raphson puede interpretarse como un método de iteración de punto fijo. Así, dada la ecuación f(x) = 0, se puede considerar el siguiente método de iteración de punto fijo:
Se escoge h(x) de manera que g'(r)=0 (r es la raíz buscada). Dado que g'(r) es:
Entonces:
Como h(x) no tiene que ser única, se escoge de la forma más sencilla:
Por tanto, imponiendo subíndices:
Expresión que coincide con la del algoritmo de Newton-Raphson
Convergencia del Método
El orden de convergencia de este método es, por lo menos, cuadrático. Sin embargo, si la raíz buscada es de multiplicidad algebraica mayor a uno (i.e, una raíz doble, triple,...), el método de Newton-Raphson pierde su convergencia cuadrática y pasa a ser lineal de constante asintótica de convergencia 1-1/m, con m la multiplicidad de la raíz.
Existen numerosas formas de evitar este problema, como pudieran ser los métodos de aceleración de la convergencia tipo Δ² de Aitken o el método de Steffensen. Derivados de Newton-Raphson destacan el método de Ralston-Rabinowitz, que restaura la convergencia cuadrática sin más que modificar el algoritmo a:
Evidentemente, este método exige conocer de antemano la multiplicidad de la raíz, lo cual no siempre es posible. Por ello también se puede modificar el algoritmo tomando una función auxiliar g(x)=f(x)/f'(x), resultando:
Su principal desventaja en este caso sería lo costoso que pudiera ser hallar g(x) y g'(x) si f(x) no es fácilmente derivable.
Por otro lado, la convergencia del método se demuestra cuadrática para el caso más habitual en base a tratar el método como uno de punto fijo: si g'(r)=0, y g' '(r) es distinto de 0, entonces la convergencia es cuadrática. Sin embargo, está sujeto a las particularidades de éstos métodos.
Nótese de todas formas que el método de Newton-Raphson es un método abierto: la convergencia no está garantizada por un teorema de convergencia global como podría estarlo en los métodos de falsa posición o de bisección. Así, es necesario partir de una aproximación inicial próxima a la raíz buscada para que el método converja y cumpla el teorema de convergencia local.
Teorema de Convergencia Local del Método de Newton
Sea . Si
,
y
, entonces existe un r > 0 tal que si | x0 − p | < r, entonces la sucesión {xn} con
verifica que:
- | xn − p | < r para todo n y xn tiende a p cuando n tiende a infinito.
Si además , entonces la convergencia es cuadrática.
Ejemplo
Consideremos el problema de encontrar un número positivo x tal que cos(x) = x3. Podríamos tratar de encontrar el cero de f(x) = cos(x) - x3.
Sabemos que f '(x) = -sin(x) - 3x2. Ya que cos(x) ≤ 1 para todo x y x3 > 1 para x>1, deducimos que nuestro cero está entre 0 y 1. Comenzaremos probando con el valor inicial x0 = 0,5
Los dígitos correctos están subrayados. En particular, x6 es correcto para el número de decimales pedidos. Podemos ver que el número de dígitos correctos después de la coma se incrementa desde 2 (para x3) a 5 y 10, ilustando la convergencia cuadrática.
No hay comentarios:
Publicar un comentario